
Test system provides phase-stable rpm simulation for engine electronics
For the operation of a motor electronics at the test stand, it is necessary to simulate crankshaft and camshaft signals in a phase-stable manner. Decisive factors for the simulation at the test stand are the speed of the drive shaft driving drives the pump shaft of the injection system. In the real vehicle, this task is taken by the crankshaft. At the test stand, the respective rotational speeds of crankshaft and camshaft are simulated for each drive or pump shaft speed.
As long as traditional transmission ratios like 2: 1 from crankshaft to camshaft and 1: 1 from crankshaft to pump shaft were considered standard values, this simulation was comparatively easy to handle. Nowadays however, injection systems based on common-rail technology, in which the ratio of the crankshaft to the pump shaft can sometimes be odd, for example 5: 3.
Further technology trends that that make simulating more complicated are start-stop systems and hybrid drives. While traditionally, it was sufficient if the test equipment provided correctly simulated angle signals from a certain speed on, and only in a direction of rotation. The characteristics of modern however engines made it necessary to extend the simulation spectrum to zero speed and even to of reverse rotation.
Therefore, Smart Testsolutions equipped the ISIM-G2 with a new, FPGA-based logic design. This can simulate the correct rotational speeds of the crankshaft and camshaft from the rotational speeds of the drive shaft > 0.5 rpm and maintain the relative phase position of the shafts to one another even at very high rotational speeds. Even at high accelerations, the ISIM G2 has a maximum phase error of 0.2 degrees, while in standard operation it is 0.1 degrees.
Fuel injection systems process angle-based signals. Therefore, the ISIM-G2 generates angle-based trigger signals as well as angular and speed-proportional analog signals. The duration of a trigger signal can be adjusted freely. In addition, the ISIM-G2 offers more signal type configuration options. For example, it also can simulate DG23i sensors, which detect the direction of rotation via inductive sensors and Hall sensors.
The ISIM-G2 is primarily designed for operation on test stands around injection technology, but can also be used for other application fields. The device can simultaneously simulate up to five completely independent shafts, whereby the dependencies of these shafts are freely adjustable. This allows, among others, rpm simulation with four individually driven wheels.
Another feature of the ISIM-G2 is the web-enabled control software, which allows the device to be operated from any workplace in the local area network via a web browser.
Further information: https://www.smart-testsolutions.de/home-en.html
