MENU

The next killer app: Machines that see

The next killer app: Machines that see

Technology News |
By eeNews Europe



These applications became feasible on a large scale only after the emergence of processors with adequate performance and sufficiently low prices and power consumption. And once those processors emerged, these applications started to take off. Then, the growing market attracted competition and investment. Processor vendors tuned their processors for these applications.

As a result, we got a generation of DSP processors with features such as add-compare-selection instructions for Viterbi decoding, and a generation of DSPs and CPUs with features like sum-of-absolute-difference instructions and single-instruction-multiple-data operations for video compression.

A few years ago, after nearly two decades of evaluating and using embedded processors for digital-signal-processing-intensive applications, my colleagues and I at BDTI realized that embedded computer vision applications were poised to benefit from the same type of “virtuous circle” that had previously enabled the proliferation of wireless communications and video compression algorithms.

Computer vision has been around for decades in applications like factory automation. But only very recently has vision begun to be incorporated into high-volume applications like video games and automobile safety systems. And, now that vision is starting to appear in volume applications, processor vendors are beginning to focus on embedded vision applications, and to tune their processors for these applications – often by incorporating specialized coprocessors specifically designed for vision processing.

It’s easy to see why processor suppliers are excited about embedded vision applications. “Machines that see” offer compelling value in many applications and markets. Take automotive safety, for example. Over one million people are killed each year in automobile accidents. By reducing the number and severity of collisions, vision-based safety systems may be able to save many thousands of lives.

Embedded vision also promises to improve human-machine interaction—long the Achilles’ heel of consumer electronics. Instead of hunting for the right hand-held remote control, imagine a world where you simply stare at your TV for a few seconds, and in response it turns itself on and offers you a personalized menu of options, which you can choose from via simple gestures. Market research firm IMS Research estimates that by 2015, vision-enabled devices will be shipping at a rate of over 3 billion units per year.(Read about many more embedded vision applications here).

In some applications, vision functions will be relatively simple and will be able to fit into existing processors (perhaps with a modest boost in clock rate or an additional core). But many of the most compelling embedded vision applications use very performance-hungry algorithms. Implementing these algorithms at low cost and low power consumption will require specialized processors. As a result, we expect to see processor suppliers introducing more processors that are optimized for vision applications, and providing more application development support (such as optimized software libraries) for these applications.

Jeff Bier is founder, Embedded Vision Alliance and president, BDTI.

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s