MENU

Tin-oxide nanoparticle network paves way for fast-charging batteries

Tin-oxide nanoparticle network paves way for fast-charging batteries

Technology News |
By eeNews Europe



Anodes in most of today’s lithium-ion batteries are made of graphite which has a theoretical maximum storage capacity of 372 milliamp hours per gram, which hinders battery technology progress.

The researchers have performed experiments with a ‘porous interconnected’ tin-oxide based anode, which has nearly twice the theoretical charging capacity of graphite. The researchers demonstrated that the experimental anode can be charged in 30 minutes and still have a capacity of 430 milliamp hours per gram (mAh g−1), which is greater than the theoretical maximum capacity for graphite when charged slowly over 10 hours.

The anode consists of an ‘ordered network’ of interconnected tin oxide nanoparticles that would be practical for commercial manufacture because they are synthesized by adding the tin alkoxide precursor into boiling water followed by heat treatment explained Vilas Pol, an associate professor of chemical engineering at Purdue University.

Pol said. "This is very straightforward rapid ‘cooking’ of a metal-organic precursor in boiling water. The precursor compound is a solid tin alkoxide – a material analogous to cost-efficient and broadly available titanium alkoxides. It will certainly become fully affordable in the perspective of broad scale application mentioned by collaborators Vadim G. Kessler and Gulaim A. Seisenbaeva from the Swedish University of Agricultural Sciences."

Findings are detailed in a paper published in November in the journal Advanced Energy Materials.

When tin oxide nanoparticles are heated at 400 degrees Celsius they ‘self-assemble’ into a network containing pores that allow the material to expand and contract, or breathe, during the charge-discharge battery cycle.

"These spaces are very important for this architecture," said Purdue postdoctoral research associate Vinodkumar Etacheri. "Without the proper pore size, and interconnection between individual tin oxide nanoparticles, the battery fails."

Related articles and links:

www.purdue.edu

News articles:

New electrolyte promises cheaper high efficiency magnesium-sulfur batteries

Lithium-ion to primary battery power design conversion strategies

‘Smart’ lithium-ion battery alerts users to fire risk

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s