Tunable-spectrum optoelectronics operate over broad IR range

Tunable-spectrum optoelectronics operate over broad IR range

Technology News |
By Rich Pell

Black phosphorous (BP) is used to make two types of optoelectronic devices: light emitting diodes (LEDs) and photodetectors. What the researchers found was that under mechanical strain, BP can be induced to emit or detect infrared (IR) light in a range of desirable wavelengths – from 2.3 to 5.5 micrometers (µm), which spans short- to mid-wave IR – and to do so reversibly at room temperature.

The findings, say the researchers, are significant not only for the ability to reach these wavelengths, but to do so tunably and in one device. Current technology would require multiple bulky devices and differing semiconductor materials to achieve similar results.

Such an ability to use a broader range of the IR spectrum, tunable within one device, could help meet the growing demand for a range of applications, including optical communications, thermal imaging, health monitoring, spectroscopy, chemical sensing and more. To demonstrate this flexibility, the researchers used one of their new devices to detect multiple gases.

The researchers found that using thin layers of BP in optoelectronic devices and subjecting them to varying degrees of strain results in reversibly tunable output wavelengths over an unexpectedly large range. The output wavelength of BP and other semiconductor materials is a property known as bandgap.

The spectral range over which an optoelectronic device can operate is largely determined by the bandgap of its semiconductor material, with different approaches able to be used to achieve the desired operating wavelength for a given application. For example, alloys – materials of varying composition – and strain can be used to tune the bandgap.

While these approaches are indeed effective, say the researchers, they result in devices with fixed operating wavelengths.

“In our work,” says postdoctoral fellow Hyungjin Kim, a co-author of a study on the research, “we can actively change the bandgap of the black phosphorous such that a single photodetector or LED can change its operating wavelengths within, roughly, the two- to five- micrometer range. We can go back and forth as many times as we want.”

The researchers say they are exploiting BP’s “magical” properties – specifically, its bandgap change under strain, which is much larger than those observed with conventional semiconductor materials.

“There is innovation in the device itself,” says Ali Javey, Lam Research Distinguished Chair in Semiconductor Processing and professor of electrical engineering, “but the material that we are using, black phosphorus, also has inherently unique properties [bandgap and sensitivity to strain], and we’re combining those two key characteristics.”

Black phosphorous is a two-dimensional material like graphene. In a process called exfoliation, researchers use Scotch tape to lift nanometer-thin layers of the material, which is then transferred to a flexible polymer substrate, in this case polyethylene terephthalate glycol (PETG).

“Because it’s mechanically flexible, we can bend it to a desired radius and controllably apply strain to BP,” says Kim.

That is, bending becomes an effective knob to modulate the BP bandgap. In addition to bandgap, say the researchers, BP shows unique strain-dependent properties that also include tunable van der Waals interaction and piezoelectricity. Strain can be applied to BP in a reversible manner due to its thin membrane nature.

In one application, the researchers used a technique called non-dispersive IR gas sensing. Because each gas has its own absorption band – that is, the amount of light it absorbs at a specific wavelength – a tunable IR LED of sufficient output wavelength range could detect, for example, carbon dioxide expelled by human breathing. That’s because the gas absorbs light at around 4.3 micrometers, within the 2.3 to 5.5 micrometer device range. Other gases detectible with tunable BP LEDs include methane and water.

An application for BP photodetectors could be thermal imaging – for example, it could be used in night vision goggles to detect any exothermic heat source like human bodies. Such tunable photodetectors would be capable of selective thermal imaging over a range of IR wavelengths.

From the materials point of view, there is a lot of interest in identifying new semiconductors that are more efficient in this wavelength range, say the researchers.

“That’s when we started to look at black phosphorus,” says Javey, “because it was known already to have a bandgap that overlaps with the mid-wavelength IR. From there we looked at how we can build efficient devices like LEDs and photodetectors using this material. But what is new here is tunability – that you can actively tune the device with strain over a large wavelength range.”

Moving forward, says Javey, “I think this device concept can be applied to other parts of the spectrum, perhaps even making devices that could operate in the visible regime. That could enable new types of displays, for example, if these concepts and materials can be incorporated in a manufacturable, scalable way, with miniaturized electromechanical devices.”

For more, see “Actively variable-spectrum optoelectronics with black phosphorus.”

Related articles:
Formerly ‘useless’ material holds promise for flexible, smaller electronics
MIT researchers stack 2D photonic layer on top of silicon
Natural night vision device lets naked eye “see” near-IR light


If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles