
Tyndall National Institute captures snapshots of moving atoms under bursts of light
14.00
Published in Nature Physics, the collaborative research, led at the Tyndall National Institute by Prof. Stephen Fahy, is currently using x-ray lasers to investigate how natural vibrations of molecules and solids are excited by intense bursts of light.
The x-ray laser generates pulses so short that they can capture a snapshot of the moving atoms in less than a billionth of a billionth of a second, which enables researchers to better understand how individual atoms are affected when light is absorbed.
While current studies focus on movement of atoms in germanium, this is the first time that researchers have been able to look at any material in such detail. As the research progresses, it has the potential to revolutionise the speed and capacity of data transfer through optical fibres on the internet and even unlock how atom-level photosynthesis works, with the possibility for it to be replicated to increase energy storage capacity.
“Understanding and controlling how light alters the forces between atoms is central to our understanding of photo-chemistry and underpins many areas of energy science, such as photo-catalysis” explains Prof. Fahy from the Materials Theory Group at Tyndall National Institute.
The research paper was co-authored by researchers from SLAC National Research Laboratory, Stanford University, University of Michigan, Oxford University, ETH Zurich, Lund University and the University of Duisburg-Essen under the direction of Prof. David Reis, Stanford University Department of Applied Physics, who was also resident in Tyndall from April to June this year under the SFI Walton Visiting Fellow programme. A 5-year programme of research on this topic at the Tyndall National Institute is currently funded by Science Foundation Ireland.
Visit the Tyndall National Institute at www.tyndall.ie
Normal
0
false
false
false
EN-GB
X-NONE
X-NONE
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Table Normal”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:””;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Calibri”,”sans-serif”;}
