UK project to double range of electric vehicle with silicon batteries
The SUNRISE (Synthomer, UCL & Nexeon’s Rapid Improvement in the Storage of Energy) project will use silicon as a replacement for carbon in the cell anode and optimise cell designs for automotive applications.
Nexeon, which is commercialising a silicon anode, will lead the silicon material development and scale-up stages of the SUNRISE project, while leading polymer company Synthomer will lead the development of a next generation polymer binder optimised to work with silicon and ensure anode/binder cohesion during a lifetime of charges. Nexeon and University College London (UCL) will jointly lead the work on material characterisation and cell performance.
Silicon is currently being adopted as a partial replacement for carbon in battery anodes, typically up to the level of 10% replacement, but problems caused by expansion when the cells are charged and discharged remain a hurdle. Project SUNRISE addresses the silicon expansion and binder system issues, and allows more silicon to be used, further increasing the energy density that can be achieved in the cell. Innovative silicon anode material with a polymer binder represents a ‘drop-in’ replacement for current graphite anode systems. Lower cost and better performance power sources will reduce the time required for EVs to achieve mass adoption.
“The biggest problems facing EVs – range anxiety, cost, charge time or charging station availability – are almost all related to limitations of the batteries,” said Dr Scott Brown, CEO of Nexeon. “Silicon anodes are now well established on the technology road maps of major automotive OEMs and cell makers, and Nexeon has received support from UK and global OEMs, several of whom will be involved in this project as it develops.”
“The challenges in developing the next generation of range enabling EV battery technology creates new opportunities for partners in the material supply chain,” said Dr Robin Harrison, Synthomer’s Global Innovation Director. “Synthomer is pleased to build upon its existing experience in battery binder systems in order to realise the revolutionary potential in the SUNRISE silicon anode.”
The funding comes from InnovateUK as part of the Faraday Battery Challenge. This offers a co-ordinated programme of competitions across research, innovation and scale-up for the first time and is the first in a series of Research Challenges managed by Innovate UK as part of the Industrial Strategy Challenge Fund (ISCF). The Faraday Battery Challenge is an investment of £246m over four years to help UK businesses seize the opportunities presented by the transition to a low carbon economy, to ensure the UK leads the world in the design, development and manufacture of batteries for electric vehicles.
Related stories:
- NEXEON RAISES £30 MILLION FOR NEXT GENERATION LI-ION BATTERIES
- SILICON ANODE SPINOUT TARGETS BATTERIES WITH 50 PER CENT MORE ENERGY
- UK SETS UP £65M BATTERY RESEARCH INSTITUTE
- UK BETS £246 MILLION ON BATTERIES