3D printing aerogel microstructures for sensors and insulation

August 21, 2020 //By Nick Flaherty
3D printing aerogel microstructures for sensors and insulation
A 3D printing process developed at EMPA in Switzerland can produce aerogel structures that can be used to insulate small electronic components and even build small pumps and sensors.

A team at EMPA in Switzerland has developed a technique to 3D print microstructures using insulating silica aerogels.  

The team led by Shanyu Zhao, Gilberto Siqueira, Wim Malfait and Matthias Koebel have succeeded in producing stable, well-shaped microstructures from silica aerogel by using a 3D printer. The printed structures can be as thin as a tenth of a millimetre. The aerogel can be used to insulate small electronic components and even build small pumsp and sensors.

The thermal conductivity of the silica aerogel is just under 16 mW/(m*K), half that of polystyrene and even significantly less than that of a non-moving layer of air at 26 mW/(m*K). At the same time, the printed silica aerogel has even better mechanical properties and can even be drilled and milled. This opens up completely new possibilities for the post-processing of 3D printed aerogel mouldings.

With the method, for which a patent application has now been filed, it is possible to precisely adjust the flow and solidification properties of the silica ink from which the aerogel is later produced, so that both self-supporting structures and wafer-thin membranes can be printed. As an example of overhanging structures, the researchers printed leaves and blossoms of a lotus flower. The test object floats on the water surface due to the hydrophobic properties and low density of the silica aerogel - just like its natural model. The new technology also makes it possible for the first time to print complex 3D multi-material microstructures.

Such structures would make it simple to thermally insulate even the smallest electronic components from each other. The researchers were able to demonstrate the thermal shielding of a temperature-sensitive component and the thermal management of a local "hot spot". Another possible application is the shielding of heat sources inside medical implants, which should not exceed a surface temperature of 37 degrees in order to protect body tissue.

Next: 3D printing an aerogel pump for a sensor 


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.