Airbus shows 5G aerial basestation, plans for 6G

November 16, 2021 // By Nick Flaherty
Airbus shows 5G aerial basestation, plans for 6G
Airbus and NTT Docomo shows broadband cellular operation from the Zephyr S high altitude pseudo satellite for 5G and 6G links

Airbus has demonstrated broadband wireless links from its high altitude Zephyr drone in the stratosphere.

Working with NTT Docomo, the solar-powered Zephyr S High Altitude Platform Station (HAPS) stayed in the air for 18 days in the US and provided an agile datalink during a stratospheric flight to simulate future direct-to-device connectivity. Test data was captured at different altitudes and at different times of day and night, focusing on assessing how connectivity is affected in the stratosphere by factors including weather conditions, different elevation angles and aircraft flight patterns.

Tests included various bandwidths to simulate direct-to-device service from the HAPS to end users using low, nominal and high throughput.  The demonstration confirmed the viability and versatility of the 2GHz spectrum for HAPS-based services and also the use of a narrow (450MHz) band to provide connectivity in a range of up to 140km.

The measurement and analysis of the propagation of radio waves transmitted from Zephyr demonstrated the feasibility of stratospheric communications to devices such as smartphones. Based on the results, the two companies aim to provide communication services to mountainous areas, remote islands, and maritime areas where radio waves are difficult to reach. 

The trial involved a radio propagation experiment from the stratosphere at an altitude of approximately 20 kilometers to a receiving antenna on the ground.  Tests involved a direct connection between the radio equipment on board a Zephyr S HAPS aircraft flying in the stratosphere and the ground antenna under conditions of ever-changing altitude and day/night time.

The trial tested the stability of the connection between the Zephyr S HAPS and the ground antenna and how it was affected by factors such as weather conditions, differences in reception distance, and the flight pattern of the HAPS aircraft. As a result, under three specific scenarios: clear, rainy and cloudy conditions, and in a multitude of flight patterns, data transmissions across various speeds were successfully demonstrated, up to a distance of 140km.

"Docomo believes that HAPS will be a promising solution for coverage expansion in 5G evolution and 6G,” said Takehiro Nakamura, General Manager of Docomo's 6G-IOWN Promotion Department. “In this measurement experiment, we were able to demonstrate the effectiveness of HAPS, especially for direct communication to smartphones, through long-term propagation measurements using actual HAPS equipment. Based on these results, we would like to further study the practical application of HAPS in 5G evolution and 6G with Airbus.”

As part of efforts to further advance 5G and prepare for 6G, "coverage expansion" to expand communication networks to any location, including air and sea, is being studied worldwide. To achieve this, non-terrestrial network (NTN) technology is expected to be used. In addition to coverage of the air and sea, stratospheric HAPS networking will be useful for disaster preparedness and many industrial use cases, for example, to increase communication capacity in densely populated areas such as event venues, and remotely controlling heavy equipment at construction sites.

The test data will be used to inform future LTE direct-to-device services that are expected to be provided via the Airbus Zephyr HAPS solution. 

“Billions of people across the world suffer from poor or no connectivity. These tests show us the viability of the stratosphere to bridge this divide and provide direct to device connectivity via Zephyr without the need for base stations or extra infrastructure,” said Stephane Ginoux, Head of North Asia region for Airbus and President of Airbus Japan

There were six test flights in total, four low level test flights and two stratospheric flights.  The stratospheric flights flew for around 18 days each, totalling more than 36 days of stratospheric flight in the campaign. This adds a further 887 flight hours to the 2,435 stratospheric flight hours for Zephyr to date, marks significant progress for fixed wing HAPS and is a step towards making the stratosphere an operational reality for its customers.

“Credible and proven ultra-persistence, stratospheric agility, and payload interoperability underscore why Zephyr is the leader in its sector. It is a sustainable, solar powered, ISR and network extending solution that can provide vital future connectivity and earth observation to where it is needed.” said Jana Rosenmann, Head of Unmanned Aerial Systems at Airbus.

www.airbus.com

Related articles

Other articles on eeNews Europe


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.