Charge-storing threads turn fabric into supercapacitor

May 14, 2019 //By Bill Schweber
Researchers combined conductive threads with a polymer film to create a flexible mesh of electrodes on a textile backing that functions as a supercapacitor.

Using textiles and fabrics for harvesting power, storing energy, and bio-sensing makes sense—after all, everyone wears a shirt. A team at the University of Massachusetts has developed a way to combine vapor-coated conductive threads with a polymer film, via a special sewing technique, to create a flexible mesh of aligned electrodes on a textile backing. The result is what they call a distributed micro-supercapacitor (MSC) that can store charge and thus power biosensors and related devices.

The team, led by Chemistry Professor Trisha L. Andrew (director of the UMass Wearable Electronics Lab), devised a process that creates porous, conducting polymer films on densely twisted yarns. These can then be swelled with electrolyte ions to maintain a charge-storage capacity per unit length, which is much higher than prior efforts achieved with dyed or extruded fibers. In this technique, conductive threads are vapor-coated with a p-doped conducting polymer film, which then can be sewn onto as a path onto stretchy textile.

Fig. 1: Fabrication and electrochemical characterization of textile MSCs. Shown is the schematic illustration of the device fabrication sequence (a); and a photograph of a textile MSC with sewn electrodes (electrolyte is not shown) (b). Also illustrated are CV curves of textile MSCs with PVA/H2SO4 gel electrolyte (c) and EMIMBF4 ionic liquid electrolyte (d). A comparison is given (e) of the areal capacitances obtained from textile MSCs with different electrolytes calculated from the CV curves in (c,d). Galvanostatic charge/discharge curves of a textile MSC with PVA/H2SO4 gel electrolyte are provided (f). (Source: UMass Wearable Electronics Lab).

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.