Cheap plasmonics to enable full-colour fast switching e-paper: Page 2 of 3

June 03, 2016 //By Julien Happich
Cheap plasmonics to enable full-colour fast switching e-paper
Looking into ways to design high-resolution low cost display panels, researchers from Sandia National Laboratories and the Center for Nanoscale Science and Technology at the National Institute of Standards and Technology have re-visited the concept of e-paper by combining inexpensive electrochromic polymers with plasmonic structures.

Here, because the pitch of the slits determines the wavelengths of the light being transmitted down through the array, by changing the nanoslit patterns, the researchers were able to demonstrate a whole array of switchable colours using the same electrochromic polymers.


(c,d) Optical transmission spectra of PolyProDOT-Me2-coated Al-nanoslit structures with respective values of slit period P=240, 270, 300, 330, 360 and 390 nm, along with corresponding optical micrographs of device areas imaged in transmission. Transmission spectra and micrographs for (c) ON and (d) OFF states of the polymer are displayed, respectively.

The paper concludes that using such simple plasmonics considerably simplifies the fabrication process and could easily be extended to large areas for mass production, using a flexible substrate through techniques such as roll-to-roll nanoimprint lithography or nanotransfer printing.

For their experiments, the researchers created colour pixels about 10×10μm each, but Talin pointed eeNews Europe to an earlier paper "An Integrated Electrochromic Nanoplasmonic Optical Switch" published in Nano Letters, demonstrating that a single slit device could effective switch light on or off.

"However, in order to use the slits array to define colour, several slits with regular spacing on the order of the optical wavelength are necessary, which would require dimensions of around 1 micron or larger" Talin wrote in an email exchange.

When asked if he is envisaging the commercialization of such high definition colour electrochromic displays, either through IP licensing, or through a spin-off company, Talin answered: "Currently neither myself nor any of my co-authors are actively pursuing commercialization of our plasmonic-electrochromic display concept. However, we would be excited to engage any company interested in pursuing this technology, including IP licensing. Although I have considered several possible commercial names for the plasmonic-electrochromic displays, none have been trademarked at this point".


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.