Electroceutics: microimplants in place of pharmaceuticals

February 24, 2020 //By Julien Happich
Now, Fraunhofer researchers are looking at microimplants to replace lengthy and uncomfortable treatments with the delivery of targeted electric impulses to stimulate nerve cells and treat a number of chronic conditions.

“Electronic implants can release interrupted or block unwanted signals; they can send signals to other places in the body. Patients who have lost the natural ability to control their bladder function can benefit from a tiny bioelectric implant that monitors their bladder and sends a signal when they need to use the toilet. It could also use high-frequency stimulation of the damaged nerve to prevent the bladder from emptying unintentionally”, explains Vasiliki Giagka, Group Leader at the Fraunhofer Institute for Reliability and Microintegration IZM.

Fraunhofer IZM has teamed with the Technical University of Delft to produce miniature, flexible, and durable electronic implants including a dedicated sensor to monitor the patient’s bladder, with the data sent wirelessly to their destination. The implants themselves are recharged wirelessly by ultrasonic waves which stimulates tiny elastic resonators in the implants, energy is then harvested from the mechanical motion into electric power.

The 324 electrodes and complex electronics integrated into
the flexible implant stimulate and monitor neural activity
on the brain’s surface. © Fraunhofer IZM | Timothy
Benjamin Hosman.

The microimplants are to be designed to engage directly with nerve cells via electrodes using targeted electric impulses to stimulate certain physiological responses. The flexible electrodes are connected to microchips has thin as 10 micrometres to create new feedback loops between the nerves and the implants and help introduce customized and localized treatments for each patient.

Crafted from biocompatible materials like polymers, precious metals, and silicon, the so-called electroceutics (for pharmaceutical microimplants) could one day replace traditional pharmaceuticals.

New therapeutic pathways could rely on these electroceutics with the potential to minimize the unwanted side-effects caused by traditional drug therapies. The researchers anticipate that other common chronic conditions such as asthma, diabetes, Parkinson’s disease, migraines, rheumatism, high blood pressure and many others could benefit from such treatments as long as the underlying biological mechanisms remain receptive to electrical stimulation.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.