Flexible electronic synapses made waterproof, biocompatible

July 04, 2019 //By Julien Happich
electronic synapses
Aiming to design rugged and waterproof bio-inspired neuromorphic wearables capable of performing various pattern-recognition tasks, researchers from Fudan University have demonstrated a novel type of organic electronic synapses exhibiting all the essential synaptic behaviors while being highly transparent and flexible.

Published in Nanoscale Horizons journal, under the title “Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments ”, the e-synapses’ reported synaptic behaviors included paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning–forgetting–relearning. Made of a layer of poly(3,4-ethylenedioxythiophene)/poly-styrene sulfonate (PEDOT/PSS) sandwiched between indium tin oxide (ITO) electrodes, the artificial synaptic device exhibited an optical transmittance of 87.5% in the visible light range, it operated reliably even when bent to a 5mm radius and was proven to withstand water and five types of common organic solvents for over 12 hours, functioning over 6000 spikes without noticeable degradation.

PEDOT:PSS was chosen as the functional layer,
sandwiched between two ITO electrode layers
(one of them patterned as microdots)

Using the transparent, flexible, and biocompatible e-synapses, the researchers then constructed a three-layer neural network system consisting of an input layer, a hidden layer, and an output layer connected with 256x128 and 128x10 e-synapses. The authors used resampled 16x16 pixel images of handwritten digits from the MNIST database (to match the 256 input neurons) and trained the multilayer perceptron network with 10,000 initial sample images based on back-propagation, keeping 500 images to verify the recognition effect. The article report a 92.4% recognition accuracy for the handwritten digits, promising lightweight, transparent, flexible and biocompatible neuromorphic computing systems.

Fudan University – www.fudan.edu

Related articles:

Low power artificial synapse chip points way to artificial brain

Plastic-based artificial synapse beats all energy-efficiency benchmarks

Synaptic transistor learns as it switches


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.