Imec announces world-first 300mm-fab compatible directed self-assembly process line

February 10, 2012 //By Jean-Pierre Joosting
Imec announces world-first 300mm-fab compatible directed self-assembly process line
Imec has announced the successful implementation of the world first 300mm fab-compatible Directed Self-Assembly (DSA) process line all-under-one-roof in imec’s 300mm cleanroom fab.

The upgrade of an academic lab-scale DSA process flow to a fab-compatible flow was realized in collaboration with the University of Wisconsin, AZ Electronic Materials and Tokyo Electron Ltd. Imec’s DSA collaboration aims to address the critical hurdles to take DSA from the academic lab-scale environment into high-volume manufacturing.

Directed Self-Assembly (DSA) is gaining momentum as a means for extending optical lithography beyond its current limits. DSA is an alternative patterning technology that enables frequency multiplication through the use of block copolymers. When used in conjunction with an appropriate pre-pattern that directs the orientation for patterning, DSA can reduce the pitch of the final printed structure. Moreover, DSA can be used to repair defects and repair uniformity in the original print. This repair feature is especially useful in combination with EUV lithography, which today is characterized by local variation in the CD (critical dimension), especially in case of small contacts.

Figure: 14nm polystyrene lines on 28nm pitch after PMMA removal fabricated by DSA using 193nm immersion based 84nm pitch pre-pattern (left) and demonstration of the ability to repair a 200nm gap in the pre-pattern (right).

Imec now has the complete toolset on-site including a dedicated and specially configured DSA coater/developer manufactured by TEL with installed DSA materials in gallon-size quantities, the metrology toolkit including DSA defect inspection, and in-house pattern transfer capabilities all in a representative 300mm cleanroom fab environment. With established 248nm, 193nm (dry and immersion) and EUV lithography tool sets on site, imec is uniquely positioned to study DSA defectivity aiming at increasing the pattern reliability of DSA for semiconductor fab standards. Moreover, imec aims at further developing the possibilities of DSA repair in combination with EUV lithography, pushing imec’s ambition to bring EUV Lithography to production level.

This research offering is part of imec’s Advanced lithography program, available to imec’s partners in its core CMOS programs. Imec’s key core CMOS partners are Globalfoundries, INTEL, Micron, Panasonic, Samsung,


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.