Novel process could reduce OLED manufacturing costs, researcher suggests

April 10, 2013 //By Christoph Hammerschmidt
Novel process could reduce OLED manufacturing costs, researcher suggests
With OLEDs currently in the early phase of commercial production, manufacturing processes are subject to optimization. A dissertation thesis published at the University of Aachen could enable manufacturers to significantly reduce production costs.

According to the thesis submitted by researcher Manuel Boesing, a significant reduction of OLED production cost could be achieved by employing organic vapor phase deposition (OVPD). OVPD is a process for depositing organic thin films from the gas phase. Compared to the well established process of vacuum thermal evaporation (VTE), OVPD allows to achieve much higher deposition rates (and consequently a higher throughput), Boesing states. Furthermore, OVPD allows to process complex device structures with high reproducibility. This holds especially true for devices containing multiple mixed layers consisting of several different materials.

Boeing's research focuses on the development of OVPD-processed highly efficient white emitting OLED for general lighting. Different organic light emitting materials (phosphorescent as well as fluorescent) were investigated with respect to their compatibility with the OVPD process. In this context, Boesing processed and characterized a number of monochrome OLED with respect to their electro-optical properties.

Using the investigated phosphorescent materials in an optimized device structure, an external quantum efficiency (EQE) higher than 17% was achieved. Using the investigated fluorescent materials in an optimized device structure, an EQE of up to 7.9% was achieved. This surprisingly high efficiency (fluorescent materials typically exhibit an EQE of only 5%) can be explained by a partial conversion of excited triplet states into excited singlet states. Based on the obtained results, different approaches for white emitting OLED were tested.

By (vertically) combining a blue fluorescent emitting layer with a red and green phosphorescent emitting layer in one single OLED unit (single unit OLED) a white OLED with a maximum power efficiency of 16 lm/W was obtained. However, an efficiency of about 30 lm/W could be reached by (laterally) combining three monochrome OLED units in one device (multi unit OLED). To increase the efficiency of a multi unit OLED, the researcher tried to improve its light out-coupling efficiency (which is typically only about 20% for devices of this type) by placing an inorganic semitransparent reflector


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.