Organic lasers could be printed on any surface, say Cambridge researchers

September 28, 2012 //By Julien Happich
Organic lasers could be printed on any surface, say Cambridge researchers
Scientists from Cambridge University (UK) have developed a process to print lasers using everyday inkjet technology, which could be used to form lasers on virtually any surface, rigid or flexible, and which could be potentially be applied using existing printing and publishing equipment.

Today, most lasers are made on silicon wafers using expensive processes similar to those used to make microprocessors. However, scientists have now designed a process to "print" a type of organic laser on any surface, using technology very similar to that used in the home. The process involves developing lasers based on chiral nematic liquid crystals (LCs), similar to the materials used in flat-panel LCD displays. These are a unique class of photonic materials that, under the right conditions, can be stimulated to produce laser emissions. If aligned properly, the helix-shaped structure of the LC molecules can act as an optically resonant cavity - an essential component of any laser. After adding a fluorescent dye, the cavity can then be optically excited to produce laser light.

Until now, high quality LC lasers have been produced by filling a thin layer of LC material between two accurately spaced glass plates a hundredth of a millimetre wide. The glass is covered with a specially-prepared polymer coating to align the LC molecules. Unfortunately the process is still a complex one - it requires a cleanroom environment and involves multiple, intricate production steps. Furthermore, the range of substrates available is pretty limited - typically restricted to glass or silicon, for example.

Researchers from the Centre for Molecular Materials for Photonics and Electronics and the Inkjet Research Centre - both in the Department of Engineering at the University of Cambridge have devised a way to align the LC molecules and produce high resolution multi-colour laser arrays in one step, by printing them. Using a custom inkjet printing system, the researchers printed hundreds of small dots of LC materials on to a substrate covered with a wet polymer solution layer. As the polymer solution dries, the chemical interaction and mechanical stress cause the LC molecules to align and turn the printed dots into individual lasers.

The researchers believe that this simple process can form lasers on

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.