Pathway to converting sunlight to electricity is indentified

December 19, 2014 //By Paul Buckley
Pathway to converting sunlight to electricity is indentified
A University of Oregon spectroscopy experiment has opened a window on how captured sunlight can be converted into electricity and could inspire devices with improved efficiency in solar energy conversion.

Four pulses of laser light on nanoparticle photocells helped to discern a pathway of sunlight to electricity using lead-sulfide quantum dots as a photoactive semiconductor material.  

The research is detailed in a paper placed online by the journal Nature Communications.

In the process, each single photon that is absorbed potentially creates multiple packets of energy called excitons. The packets can generate multiple free electrons that generate electricity in a process known as multiple exciton generation (MEG). In most solar cells, each absorbed photon creates one potential free electron.  

Multiple exciton generation can lead to solar cells that generate more electrical current and make them more efficient. The UO work shines new light on the little understood process of MEG in nanomaterials.  

The UO spectroscopy experiment - adapted in a collaboration with scientists at Sweden's Lund University - should be useful for studying many other processes in photovoltaic nanomaterials, said Andrew H. Marcus, professor of physical chemistry and head of the UO Department of Chemistry and Biochemistry.

Spectroscopic experiments previously designed by Marcus to perform two-dimensional fluorescence spectroscopy of biological molecules were adapted to also measure photocurrent. "Spectroscopy is all about light and molecules and what they do together," explained Marcus. "It is a really great probe that helps to tell us about the reaction pathway that connects the beginning of a chemical or physical process to its end.

"The approach is similar to looking at how molecules come together in DNA, but instead we looked at interactions within semiconductor materials," said Marcus, an affiliate in UO's Institute of Molecular Biology, Materials Science Institute and Oregon Center for Optics. "Our method made it possible to look at electronic pathways involved in creating multiple excitons. The existence of this phenomenon had only been inferred through indirect evidence. We believe we have seen the initial steps that lead to MEG-mediated photo conductivity."

The controlled sequencing of laser pulses allowed the

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.