Researchers demonstrate ultra-flexible heterogeneous electronics

February 06, 2020 //By Julien Happich
heterogeneous electronics
Leveraging a novel process called “remote epitaxy” invented at MIT a couple of years ago, researchers have demonstrated how such a process could be used to grow thin films of semiconductors or other exotic materials, and peel them off their substrate before stacking them into ultra-flexible heterogeneous electronic structures.

Remote epitaxy uses a thick wafer substrate as the template for growing thin films, albeit separated by an intermediate layer of graphene which makes it easy to peel off the newly grown epitaxial layer. It also keeps the original substrate wafer intact and re-usable for another remote epitaxy, drastically saving on materials and chip costs compared to traditional epitaxial processes where the substrate remains as part of the chip.

The novel idea demonstrated in a Nature paper titled “Heterogeneous integration of single-crystalline complex-oxide membranes” is to use remote epitaxy to produce free-standing films of any functional material which can be stacked closely into heterogeneous multifunctional electronic devices otherwise impossible to achieve due to lattice mismatches and inherent epitaxial challenges.

Stacking the layers also hybridizes their physical properties, the researchers found, and because the films are less than a micrometre thick, the whole stacks remain highly flexible, which could make them good candidates for numerous freeform applications including solar-powered skins or conformable wearables.

“You can use this technique to mix and match any semiconducting material to have new device functionality, in one flexible chip,” explains Jeehwan Kim, an associate professor of mechanical engineering at MIT. “You can make electronics in any shape.”

In 2018, the team showed that they could use remote epitaxy to make semiconducting materials from metals in groups 3 and 5 of the periodic table. Since then, they experimented with a number of increasingly exotic semiconducting combinations, including complex oxides with a wide range of electrical and magnetic properties. Some combinations can generate a current when physically stretched (piezoelectricity) or exposed to a magnetic field (magnetostriction).

Kim says the ability to manufacture flexible films of complex oxides could open the door to new energy-havesting devices, such as sheets or coverings that stretch in response to vibrations and produce electricity as a result. Until now, complex oxide materials have only been manufactured on rigid, millimetre-thick wafers, with limited flexibility and therefore limited energy-generating potential.

In their paper, the authors report the remote epitaxial growth of multiple complex oxide materials, peeling off each 100-nanometer-thin layer as it was made before stacking them together and bonding them through mild heating (Van der Waals forces ensuring atomic-level bonding).

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.