ST joins Qualcomm’s ecosystem for 5G wearables

November 10, 2020 // By Nick Flaherty
ST joins Qualcomm’s ecosystem for 5G wearables
STMicroelectronics has joined the Qualcomm Platform Solutions Ecosystem program to add sensors to the SnapDragon platform for 5G wearables and smartphones

STMicroelectronics has joined the ecosystem around 5G wearables and smartphones designed around chips from Qualcomm Technologies

As part of the Qualcomm Platform Solutions Ecosystem program, ST is contributing pre-validated software to OEMs for its MEMS and other sensing devices for the next generation of smartphones, connected PCs, IoT, and wearables using Qualcomm's SnapDragon chips.

Most recently, Qualcomm Technologies has pre-selected ST’s latest high-accuracy, low-power, motion-tracking IC with intelligent sensor software, along with ST’s most accurate pressure sensor, for use in its latest advanced 5G mobile reference platforms.

This motion tracking sensor, the iNEMO LSM6DST, is a 6-axis Inertial Measurement Unit (IMU) that integrates a 3-axis digital accelerometer and a 3-axis gyroscope into a compact and efficient System-in-Package. This has a low power consumption of 0.55mA in high-performance mode and as little as 4mA in accelerometer-only mode for always-on high-accuracy motion tracking with minimal impact on power consumption. Combined with ST’s low-noise (0.65Pa), high-accuracy (±0.5hPa), and industry-first I3C-enabled LPS22HH pressure sensor, the pair provides highly accurate location tracking while meeting the most restrictive power budgets.

For imaging applications, the LSM6DST fully supports EIS and OIS (Electronic and Optical Image Stabilization) applications as the module includes a dedicated configurable signal processing path for OIS and auxiliary SPI, configurable for both the gyroscope and accelerometer and, in turn, the Auxiliary SPI and primary interface (SPI / I²C & MIPI I3CSM) can configure the OIS.

The device uses ST’s ThELMA (Thick Epitaxial Layer for Micro-gyroscopes and Accelerometers) proprietary surface micromachining process that combines variably thick and thin poly-silicon layers for structures and interconnection, enabling the integration of accelerometer and gyroscope mechanical elements in a single chip.

The LSM6DST supports and simplifies integration in low-power circuit designs and offers I²C, MIPI I3C or SPI from the sensing element to the application. It also contains a 9-kbyte FIFO to allow dynamic data batching and 16 finite state machines that recognize programmed data sequences from the sensor and further reduce system-level power consumption.

“ST has

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.