
The company CTO and co-founder and also professor in nano-electronics & nano-photonics at the Norwegian University of Science and Technology, Dr. Helge Weman co-authored a paper comforting all these claims.
The paper “GaN/AlGaN Nanocolumn Ultraviolet Light-Emitting Diode Using Double-Layer Graphene as Substrate and Transparent Electrode” published in the Nano Letters describes how a multi-disciplinary team of Norwegian and Japanese researchers leveraged the unique properties of atomic-thin layers of graphene as a hexagonal lattice template for the nucleation and growth of perfectly crystalline GaN/AlGaN nanowires (with less than 2% of lattice mismatch). Standing vertically on their graphene substrate (on top of amorphous silica), the 220nm diameter nanocolumns exhibit near-perfect hexagonal cross-sections and their growth is so perfectly controlled by radio frequency plasma-assisted molecular beam epitaxy (RF-PAMBE) that they all have the same average height, making it easy to cap them with a planar electrode. The growth process is fast too, with nanowires reaching a 1µm height within minutes.
Being transparent in all parts of the electromagnetic spectrum including the whole UV region, graphene offers an excellent alternative to indium tin oxide as the top-emitting transparent conductive electrode (TCE) for GaN and InGaN LEDs, the authors write. Another benefit of graphene is its extreme thinness and flexibility.