The stretchy electronics revolution

April 14, 2020 //By Samir Jaber
stretchy electronics
The days of the hard computer chip may be numbered. Covered in transistors and other semi-conducting elements, these rigid devices likewise render the devices in which they are found — our televisions, laptops and smartphones — similarly inflexible.

Despite many false starts, stretchable electronics have been developing — and becoming commercialised — for about a decade. According to a recent report by IDTechEX Research, Stretchable Electronics 2017-2027, the market for stretchable electronics could grow to at least $600 million by 2027.

Stretchable electronics are required to conform to a required shape and survive the environment in which they must operate. The main application behind the technology’s explosive growth potential is wearables, where stretchable electronics can be woven into soft fabrics or textiles. Wearables, whether they are relied upon in military, medical or sports applications, demand one dimensional (1D) electronic devices that are light, flexible and adaptable to frequent deformations.

Other applications include soft robots — that are, as the name suggests, made from soft or elastic materials — and stretchable sensors, circuits, displays, batteries, energy harvesters, displays, transistors and photovoltaics. “Stretch sensors” are finding use in a variety of applications from electronic textiles to robotic arms, and the industry is considering new applications beyond these; including the notion that stretchable electronics could one day offer a biomimicry of human skin. Nevertheless, many of these ideas are still in the early proof-of-concept phase.

The primary drivers behind stretchable electronics are material synthesis, mechanical design and fabrication. Clearly, much progress has been made in stretchable electronics. But what are the materials and processes affecting this significant paradigm shift in electronics? There are two basic principles behind the manufacture of stretchable conductors and electrodes. First is the use of intrinsic stretchable materials; second is making intrinsically non-stretchable materials stretchable.

Either way, to achieve stretchable conductors, conductive components — like metal nanowires, conductive carbon nanomaterials and conductive polymers — are often used as fillers and arranged in an elastomer matrix, whereby materials are cross-linked. This matrix is arranged to a desired structural design. This may be a wavy configuration, a fractal design or a horseshoe-shaped planar structure.

In recent years, strenuous efforts have been made to improve the electronic performance of these technologies under stretching. But, how “stretchable” must this technology be? For smart clothing and other wearable electronic devices, 25 per cent stretchability is generally enough and the device must maintain its performance up to the critical strain.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.