MENU

Programmable Photonic Chips will accelerate future Chips

Programmable Photonic Chips will accelerate future Chips

Technology News |
By Wisse Hettinga



Liquid crystal technology and MEMS are enabling reprogrammable PICs that will be able to support multiple functions and significantly accelerate the development cycle of future photonic chips

While electronics are perfect for performing fast calculations, photonics are ideal for moving information around. A major drawback of the latter, however, is the slow and costly development process for new photonic integrated chips, hampering their widespread use. If photonic chips could be reprogrammed for different applications, this would drastically lower development costs, shorten the time to market, and improve the sustainability of their use.

In order to operate, reprogrammable photonic chips would require a large number of efficient electro-optic actuators to switch, split, and filter the light signals traveling through them. By introducing microelectromechanical systems (MEMS), as well as liquid-crystal-based solutions, researchers are now developing low-power building blocks for large-scale and reconfigurable photonic integrated circuits (PICs). Such versatile photonic chips promise to expedite applications in a wide variety of industries, including biosensing, medical technologies, and information processing.

In the picture above: The various approaches ranked according to the speed of the phase shift effect they enable versus its relative magnitude. Different actuation mechanisms can implement phase shifting in photonic circuit platforms. The ideal phase shifters would offer low power consumption, low optical losses, a short optical length, and a small footprint. Stronger mechanisms typically require a smaller footprint or length to include a phase shift. Courtesy of Ghent University/imec.

Multipurpose programmable electronics, such as field-programmable gate arrays (FPGAs), have been a crucial enabler for innovation in consumer electronics. Photonics needs chips with a similar use model: Buy a general-purpose, off-the-shelf chip and then configure it to perform the optical functions needed. A programmable photonic chip such as this could bring down the prototyping timeline for a new photonic product from many years to a few months or even weeks. This will lead to an enormous boost in the use of photonic chips and the diversity of their applications.

Learn more

 

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s