Industrial radar sensor is built in glass

January 22, 2021 //By Nick Flaherty
Industrial radar sensor is built in glass
A wafer-scale glass interposer project has enabled radar sensor system packaging up to 300GHz

A four year project in Germany has developed glass packaging for radar sensors for industrial and process metrology that operates up to 300GHz.

The “Glass Interposer Technology for Implementing Highly Compact Electronic Systems for High-frequency Applications” (GlaRA) project has developed and characterized a reliable interposer technology as a system-in-package (SiP) based on glass for broadband millimetre wave chips. This allows modules that can be used in sensors and communication at frequencies above 100 GHz.

Standard packages do not work because of the frequencies exceeding 100 GHz and must allow for adaptation for specialized sensor ASICs as well as manufacturing in medium-sized quantities at competitive prices.

The technology platform uses various waveguide concepts, high-density micro wiring, and hermetic encapsulation to increase the functions that can be integrated. In addition, it makes applications up to 300 GHz possible within a single material system, glass, through excellent waveguide properties and high-precision micromachining.

The use of glass interposers with electric feedthrough vias provides hermetic packaging able to enclose the components between two glass interposers. The packages are manufactured on 300mm glass wafers, enabling simultaneous processing of many components and alignment accuracy within the narrow tolerances of RF technology. It also uses silicon machining techniques to accelerate commercial implementation and reduce costs and glass is available in large panels, considerably simplifying scaling to large quantities.

The consortium demonstrated a compact radar front end (above) developed at Endress+Hauser for radar fill level sensors with an operating frequency of 160 GHz. The glass package is 5.9 x 4.4 x 0.8 mm and contains a radar ASIC in SiGe technology, all electrical connections to external electronics, test structures for characterization, and a waveguide connection that can also be used as an integrated primary emitter for a lens antenna.

The demos were produced using a new kind of process chain, starting with laser-induced deep etching (LIDE) by LPKF Laser & Electronics that generates microstructures in the glass.

Next: Glass system-in-package process

A glass interposer system-in-package for an industrial radar sensor

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.